skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carscadden, Kelly_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within‐ and among‐species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippianaandP. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates thanP. hippiana. In contrast, hybrid performance relative toP. pulcherrimavaried with population and climate, with the hybrid maintaining relatively stable growth rates while populations ofP. pulcherrimashrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context‐dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions forP. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long‐lived taxa are lagging behind their demographic trajectories, such that the currently less commonP. hippianacould become the most abundant of thePotentillataxa as this region continues to warm and dry. 
    more » « less